95 research outputs found

    Large-scale computation of elementary flux modes with bit pattern trees

    Get PDF
    Motivation: Elementary flux modes (EFMs)—non-decomposable minimal pathways—are commonly accepted tools for metabolic network analysis under steady state conditions. Valid states of the network are linear superpositions of elementary modes shaping a polyhedral cone (the flux cone), which is a well-studied convex set in computational geometry. Computing EFMs is thus basically equivalent to extreme ray enumeration of polyhedral cones. This is a combinatorial problem with poorly scaling algorithms, preventing the large-scale analysis of metabolic networks so far. Results: Here, we introduce new algorithmic concepts that enable large-scale computation of EFMs. Distinguishing extreme rays from normal (composite) vectors is one critical aspect of the algorithm. We present a new recursive enumeration strategy with bit pattern trees for adjacent rays—the ancestors of extreme rays—that is roughly one order of magnitude faster than previous methods. Additionally, we introduce a rank updating method that is particularly well suited for parallel computation and a residue arithmetic method for matrix rank computations, which circumvents potential numerical instability problems. Multi-core architectures of modern CPUs can be exploited for further performance improvements. The methods are applied to a central metabolism network of Escherichia coli, resulting in ≈26 Mio. EFMs. Within the top 2% modes considering biomass production, most of the gain in flux variability is achieved. In addition, we compute ≈5 Mio. EFMs for the production of non-essential amino acids for a genome-scale metabolic network of Helicobacter pylori. Only large-scale EFM analysis reveals the >85% of modes that generate several amino acids simultaneously. Availability: An implementation in Java, with integration into MATLAB and support of various input formats, including SBML, is available at http://www.csb.ethz.ch in the tools section; sources are available from the authors upon request. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    Signaling cascades as cellular devices for spatial computations

    Get PDF
    Signaling networks usually include protein-modification cycles. Cascades of such cycles are the backbones of multiple signaling pathways. Protein gradients emerge from the spatial separation of opposing enzymes, such as kinases and phosphatases, or guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) for GTPase cycles. We show that different diffusivities of an active protein form and an inactive form leads to spatial gradients of protein abundance in the cytoplasm. For a cascade of cycles, using a discrete approximation of the space, we derive an analytical expression for the spatial gradients and show that it converges to an exact solution with decreasing the size of the quantization. Our results facilitate quantitative analysis of the dependence of spatial gradients on the network topology and reaction kinetics. We demonstrate how different cascade designs filter and process the input information to generate precise, complex spatial guidance for multiple GTPase effector processes. Thus, protein-modification cascades may serve as devices to compute complex spatial distributions of target proteins within intracellular spac

    Modular parameter identification of biomolecular networks

    Get PDF
    The increasing complexity of dynamic models in systems and synthetic biology poses computational challenges especially for the identification of model parameters. While modularization of the corresponding optimization problems could help reduce the “curse of dimensionality,” abundant feedback and crosstalk mechanisms prohibit a simple decomposition of most biomolecular networks into subnetworks, or modules. Drawing on ideas from network modularization and multiple-shooting optimization, we present here a modular parameter identification approach that explicitly allows for such interdependencies. Interfaces between our modules are given by the experimentally measured molecular species. This definition allows deriving good (initial) estimates for the inter-module communication directly from the experimental data. Given these estimates, the states and parameter sensitivities of different modules can be integrated independently. To achieve consistency between modules, we iteratively adjust the estimates for inter-module communication while optimizing the parameters. After convergence to an optimal parameter set---but not during earlier iterations---the intermodule communication as well as the individual modules\' state dynamics agree with the dynamics of the nonmodularized network. Our modular parameter identification approach allows for easy parallelization; it can reduce the computational complexity for larger networks and decrease the probability to converge to suboptimal local minima. We demonstrate the algorithm\'s performance in parameter estimation for two biomolecular networks, a synthetic genetic oscillator and a mammalian signaling pathway

    Quantitative performance metrics for robustness in circadian rhythms

    Get PDF
    Motivation: Sensitivity analysis provides key measures that aid in unraveling the design principles responsible for the robust performance of biological networks. Such metrics allow researchers to investigate comprehensively model performance, to develop more realistic models, and to design informative experiments. However, sensitivity analysis of oscillatory systems focuses on period and amplitude characteristics, while biologically relevant effects on phase are neglected. Results: Here, we introduce a novel set of phase-based sensitivity metrics for performance: period, phase, corrected phase and relative phase. Both state- and phase-based tools are applied to free-running Drosophila melanogaster and Mus musculus circadian models. Each metric produces unique sensitivity values used to rank parameters from least to most sensitive. Similarities among the resulting rank distributions strongly suggest a conservation of sensitivity with respect to parameter function and type. A consistent result, for instance, is that model performance of biological oscillators is more sensitive to global parameters than local (i.e. circadian specific) parameters. Discrepancies among these distributions highlight the individual metrics' definition of performance as specific parametric sensitivity values depend on the defined metric, or output. Availability: An implementation of the algorithm in MATLAB (Mathworks, Inc.) is available from the authors. Contact: [email protected] Supplementary information: Supplementary Data are available at Bioinformatics onlin

    Autonomous Synchronization of Chemically Coupled Synthetic Oscillators

    Get PDF
    Synthetic biology has recently provided functional single-cell oscillators. With a few exceptions, however, synchronization across a population has not been achieved yet. In particular, designing a cell coupling mechanism to achieve autonomous synchronization is not straightforward since there are usually several different design alternatives. Here, we propose a method to mathematically predict autonomous synchronization properties, and to identify the network structure with the best performance, thus increasing the feasibility for a successful implementation invivo. Our method relies on the reduction of ODE-based models for synthetic oscillators to a phase description, and the subsequent analysis of the phase model either in the spatially homogeneous or heterogeneous case. This analysis identifies three major factors determining if and when autonomous synchronization can be achieved, namely cell density, cell to cell variability, and structural design decisions. Moreover, when considering a spatially heterogeneous medium, we observe phase waves. These waves may hinder synchronization substantially, and their suppression should be considered in the design process. In contrast to previous work, we analyze the synchronization process of models of experimentally validated synthetic oscillators in mammalian cells. Alternative designs for cell-to-cell communication via a quorum sensing mechanism differ in few mechanistic details, but these differences have important implications for autonomous synchronization. Our analysis suggests that not only the periodical transcription of the protein producing the signaling molecule, but also of the receptor protein is necessary to achieve good performanc

    Changing Face of Vaccination in Immunocompromised Hosts

    Get PDF
    Infection prevention is a key component of care and an important determinant of clinical outcomes in a diverse population of immunocompromised hosts. Vaccination remains a fundamental preventative strategy, and clear guidelines exist for the vaccination of immunocompromised individuals and close contacts. Unfortunately, adherence to such guidelines is frequently suboptimal, with consequent missed opportunities to prevent infection. Additionally, vaccination of immunocompromised individuals is known to produce responses inferior to those observed in immunocompetent hosts. Multiple factors contribute to this finding, and developing improved vaccination strategies for those at high risk of infectious complications remains a priority of care providers. Herein, we review potential factors contributing to vaccine outcomes, focusing on host immune responses, and propose a means for applying modern, innovative systems biology technology to model critical determinants of vaccination success. With influenza vaccine in solid organ transplants used as a case in point, novel means for stratifying individuals using a host "immunophenotype” are explored, and strategies for individualizing vaccine approaches tailored to safely optimize vaccine responses in those most at risk are discussed

    Near-optimal experimental design for model selection in systems biology

    Get PDF
    Motivation: Biological systems are understood through iterations of modeling and experimentation. Not all experiments, however, are equally valuable for predictive modeling. This study introduces an efficient method for experimental design aimed at selecting dynamical models from data. Motivated by biological applications, the method enables the design of crucial experiments: it determines a highly informative selection of measurement readouts and time points. Results: We demonstrate formal guarantees of design efficiency on the basis of previous results. By reducing our task to the setting of graphical models, we prove that the method finds a near-optimal design selection with a polynomial number of evaluations. Moreover, the method exhibits the best polynomial-complexity constant approximation factor, unless P = NP. We measure the performance of the method in comparison with established alternatives, such as ensemble non-centrality, on example models of different complexity. Efficient design accelerates the loop between modeling and experimentation: it enables the inference of complex mechanisms, such as those controlling central metabolic operation. Availability: Toolbox ‘NearOED' available with source code under GPL on the Machine Learning Open Source Software Web site (mloss.org). Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    SYSTEMORIENTIERTE BIOPROZESSTECHNIK: INTERDISZIPLINÄRE FORSCHUNG IN BIOLOGIE, SYSTEM- UND COMPUTERWISSENSCHAFTEN

    Get PDF
    Die aktuelle Forschung in der molekularen Genetik und die Erfolge bei der Analyse von Genexpression und Proteinfunktion führen zu einer bisher unerreichten Fülle von Informationen über biologische Phänomene. Damit ergeben sich neben der medizinischen Anwendung auch neue Möglichkeiten und Aufgaben in der biotechnologischen Produktion von Wirkstoffen. Um dieses biologische Potenzial voll ausschöpfen zu können, bedarf es jedoch verstärkt interdisziplinärer Forschung in Biologie, System- und Computerwissenschaften. Der hier skizzierte Forschungsansatz soll langfristig zum Aufbau eines „Virtuellen Biologischen Labors“ führen, in dem Experimente am Rechner analog zu Experimenten im Labor durchgeführt werden können. Damit steht in Forschung und Lehre ein Werkzeug zur Vermittlung quantitativer und qualitativer Aspekte von zellulären Stoffwechsel- und Regulationsvorgängen zur Verfügung
    corecore